Derivative of $$$2^{n}$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dn} \left(2^{n}\right)$$$.
Solution
Apply the exponential rule $$$\frac{d}{dn} \left(m^{n}\right) = m^{n} \ln\left(m\right)$$$ with $$$m = 2$$$:
$${\color{red}\left(\frac{d}{dn} \left(2^{n}\right)\right)} = {\color{red}\left(2^{n} \ln\left(2\right)\right)}$$Thus, $$$\frac{d}{dn} \left(2^{n}\right) = 2^{n} \ln\left(2\right)$$$.
Answer
$$$\frac{d}{dn} \left(2^{n}\right) = 2^{n} \ln\left(2\right)$$$A