Derivative of $$$2 x^{2} - 2^{\frac{2}{3}} x + \sqrt[3]{2}$$$

The calculator will find the derivative of $$$2 x^{2} - 2^{\frac{2}{3}} x + \sqrt[3]{2}$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{dx} \left(2 x^{2} - 2^{\frac{2}{3}} x + \sqrt[3]{2}\right)$$$.

Solution

The derivative of a sum/difference is the sum/difference of derivatives:

$${\color{red}\left(\frac{d}{dx} \left(2 x^{2} - 2^{\frac{2}{3}} x + \sqrt[3]{2}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(2 x^{2}\right) - \frac{d}{dx} \left(2^{\frac{2}{3}} x\right) + \frac{d}{dx} \left(\sqrt[3]{2}\right)\right)}$$

Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 2^{\frac{2}{3}}$$$ and $$$f{\left(x \right)} = x$$$:

$$- {\color{red}\left(\frac{d}{dx} \left(2^{\frac{2}{3}} x\right)\right)} + \frac{d}{dx} \left(\sqrt[3]{2}\right) + \frac{d}{dx} \left(2 x^{2}\right) = - {\color{red}\left(2^{\frac{2}{3}} \frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(\sqrt[3]{2}\right) + \frac{d}{dx} \left(2 x^{2}\right)$$

The derivative of a constant is $$$0$$$:

$${\color{red}\left(\frac{d}{dx} \left(\sqrt[3]{2}\right)\right)} - 2^{\frac{2}{3}} \frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(2 x^{2}\right) = {\color{red}\left(0\right)} - 2^{\frac{2}{3}} \frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(2 x^{2}\right)$$

Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- 2^{\frac{2}{3}} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(2 x^{2}\right) = - 2^{\frac{2}{3}} {\color{red}\left(1\right)} + \frac{d}{dx} \left(2 x^{2}\right)$$

Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 2$$$ and $$$f{\left(x \right)} = x^{2}$$$:

$${\color{red}\left(\frac{d}{dx} \left(2 x^{2}\right)\right)} - 2^{\frac{2}{3}} = {\color{red}\left(2 \frac{d}{dx} \left(x^{2}\right)\right)} - 2^{\frac{2}{3}}$$

Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 2$$$:

$$2 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} - 2^{\frac{2}{3}} = 2 {\color{red}\left(2 x\right)} - 2^{\frac{2}{3}}$$

Thus, $$$\frac{d}{dx} \left(2 x^{2} - 2^{\frac{2}{3}} x + \sqrt[3]{2}\right) = 4 x - 2^{\frac{2}{3}}$$$.

Answer

$$$\frac{d}{dx} \left(2 x^{2} - 2^{\frac{2}{3}} x + \sqrt[3]{2}\right) = 4 x - 2^{\frac{2}{3}}$$$A


Please try a new game Rotatly