Derivative of $$$2 \theta$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{d\theta} \left(2 \theta\right)$$$.
Solution
Apply the constant multiple rule $$$\frac{d}{d\theta} \left(c f{\left(\theta \right)}\right) = c \frac{d}{d\theta} \left(f{\left(\theta \right)}\right)$$$ with $$$c = 2$$$ and $$$f{\left(\theta \right)} = \theta$$$:
$${\color{red}\left(\frac{d}{d\theta} \left(2 \theta\right)\right)} = {\color{red}\left(2 \frac{d}{d\theta} \left(\theta\right)\right)}$$Apply the power rule $$$\frac{d}{d\theta} \left(\theta^{n}\right) = n \theta^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{d\theta} \left(\theta\right) = 1$$$:
$$2 {\color{red}\left(\frac{d}{d\theta} \left(\theta\right)\right)} = 2 {\color{red}\left(1\right)}$$Thus, $$$\frac{d}{d\theta} \left(2 \theta\right) = 2$$$.
Answer
$$$\frac{d}{d\theta} \left(2 \theta\right) = 2$$$A