Derivative of $$$\frac{2 \sin{\left(u \right)}}{\left|{y}\right|}$$$ with respect to $$$u$$$

The calculator will find the derivative of $$$\frac{2 \sin{\left(u \right)}}{\left|{y}\right|}$$$ with respect to $$$u$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{du} \left(\frac{2 \sin{\left(u \right)}}{\left|{y}\right|}\right)$$$.

Solution

Apply the constant multiple rule $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ with $$$c = \frac{2}{\left|{y}\right|}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\frac{2 \sin{\left(u \right)}}{\left|{y}\right|}\right)\right)} = {\color{red}\left(\frac{2}{\left|{y}\right|} \frac{d}{du} \left(\sin{\left(u \right)}\right)\right)}$$

The derivative of the sine is $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:

$$\frac{2 {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)}}{\left|{y}\right|} = \frac{2 {\color{red}\left(\cos{\left(u \right)}\right)}}{\left|{y}\right|}$$

Thus, $$$\frac{d}{du} \left(\frac{2 \sin{\left(u \right)}}{\left|{y}\right|}\right) = \frac{2 \cos{\left(u \right)}}{\left|{y}\right|}$$$.

Answer

$$$\frac{d}{du} \left(\frac{2 \sin{\left(u \right)}}{\left|{y}\right|}\right) = \frac{2 \cos{\left(u \right)}}{\left|{y}\right|}$$$A


Please try a new game Rotatly