Derivative of $$$2 \operatorname{atan}{\left(u \right)}$$$

The calculator will find the derivative of $$$2 \operatorname{atan}{\left(u \right)}$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{du} \left(2 \operatorname{atan}{\left(u \right)}\right)$$$.

Solution

Apply the constant multiple rule $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ with $$$c = 2$$$ and $$$f{\left(u \right)} = \operatorname{atan}{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(2 \operatorname{atan}{\left(u \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right)\right)}$$

The derivative of the inverse tangent is $$$\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right) = \frac{1}{u^{2} + 1}$$$:

$$2 {\color{red}\left(\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right)\right)} = 2 {\color{red}\left(\frac{1}{u^{2} + 1}\right)}$$

Thus, $$$\frac{d}{du} \left(2 \operatorname{atan}{\left(u \right)}\right) = \frac{2}{u^{2} + 1}$$$.

Answer

$$$\frac{d}{du} \left(2 \operatorname{atan}{\left(u \right)}\right) = \frac{2}{u^{2} + 1}$$$A


Please try a new game Rotatly