Derivative of $$$1 - \sin{\left(\frac{t}{2} \right)}$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dt} \left(1 - \sin{\left(\frac{t}{2} \right)}\right)$$$.
Solution
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}\left(\frac{d}{dt} \left(1 - \sin{\left(\frac{t}{2} \right)}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(1\right) - \frac{d}{dt} \left(\sin{\left(\frac{t}{2} \right)}\right)\right)}$$The derivative of a constant is $$$0$$$:
$${\color{red}\left(\frac{d}{dt} \left(1\right)\right)} - \frac{d}{dt} \left(\sin{\left(\frac{t}{2} \right)}\right) = {\color{red}\left(0\right)} - \frac{d}{dt} \left(\sin{\left(\frac{t}{2} \right)}\right)$$The function $$$\sin{\left(\frac{t}{2} \right)}$$$ is the composition $$$f{\left(g{\left(t \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ and $$$g{\left(t \right)} = \frac{t}{2}$$$.
Apply the chain rule $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(\sin{\left(\frac{t}{2} \right)}\right)\right)} = - {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dt} \left(\frac{t}{2}\right)\right)}$$The derivative of the sine is $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$$- {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dt} \left(\frac{t}{2}\right) = - {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dt} \left(\frac{t}{2}\right)$$Return to the old variable:
$$- \cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dt} \left(\frac{t}{2}\right) = - \cos{\left({\color{red}\left(\frac{t}{2}\right)} \right)} \frac{d}{dt} \left(\frac{t}{2}\right)$$Apply the constant multiple rule $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ with $$$c = \frac{1}{2}$$$ and $$$f{\left(t \right)} = t$$$:
$$- \cos{\left(\frac{t}{2} \right)} {\color{red}\left(\frac{d}{dt} \left(\frac{t}{2}\right)\right)} = - \cos{\left(\frac{t}{2} \right)} {\color{red}\left(\frac{\frac{d}{dt} \left(t\right)}{2}\right)}$$Apply the power rule $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$- \frac{\cos{\left(\frac{t}{2} \right)} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{2} = - \frac{\cos{\left(\frac{t}{2} \right)} {\color{red}\left(1\right)}}{2}$$Thus, $$$\frac{d}{dt} \left(1 - \sin{\left(\frac{t}{2} \right)}\right) = - \frac{\cos{\left(\frac{t}{2} \right)}}{2}$$$.
Answer
$$$\frac{d}{dt} \left(1 - \sin{\left(\frac{t}{2} \right)}\right) = - \frac{\cos{\left(\frac{t}{2} \right)}}{2}$$$A