Derivative of $$$- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}$$$

The calculator will find the derivative of $$$- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{dt} \left(- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}\right)$$$.

Solution

Apply the constant multiple rule $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ with $$$c = - \frac{\sqrt{2}}{4}$$$ and $$$f{\left(t \right)} = \frac{1}{t^{\frac{3}{2}}}$$$:

$${\color{red}\left(\frac{d}{dt} \left(- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}\right)\right)} = {\color{red}\left(- \frac{\sqrt{2}}{4} \frac{d}{dt} \left(\frac{1}{t^{\frac{3}{2}}}\right)\right)}$$

Apply the power rule $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ with $$$n = - \frac{3}{2}$$$:

$$- \frac{\sqrt{2} {\color{red}\left(\frac{d}{dt} \left(\frac{1}{t^{\frac{3}{2}}}\right)\right)}}{4} = - \frac{\sqrt{2} {\color{red}\left(- \frac{3}{2 t^{\frac{5}{2}}}\right)}}{4}$$

Thus, $$$\frac{d}{dt} \left(- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}\right) = \frac{3 \sqrt{2}}{8 t^{\frac{5}{2}}}$$$.

Answer

$$$\frac{d}{dt} \left(- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}\right) = \frac{3 \sqrt{2}}{8 t^{\frac{5}{2}}}$$$A


Please try a new game Rotatly