Derivative of $$$- a + b$$$ with respect to $$$a$$$

The calculator will find the derivative of $$$- a + b$$$ with respect to $$$a$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{da} \left(- a + b\right)$$$.

Solution

The derivative of a sum/difference is the sum/difference of derivatives:

$${\color{red}\left(\frac{d}{da} \left(- a + b\right)\right)} = {\color{red}\left(- \frac{d}{da} \left(a\right) + \frac{db}{da}\right)}$$

The derivative of a constant is $$$0$$$:

$${\color{red}\left(\frac{db}{da}\right)} - \frac{d}{da} \left(a\right) = {\color{red}\left(0\right)} - \frac{d}{da} \left(a\right)$$

Apply the power rule $$$\frac{d}{da} \left(a^{n}\right) = n a^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{da} \left(a\right) = 1$$$:

$$- {\color{red}\left(\frac{d}{da} \left(a\right)\right)} = - {\color{red}\left(1\right)}$$

Thus, $$$\frac{d}{da} \left(- a + b\right) = -1$$$.

Answer

$$$\frac{d}{da} \left(- a + b\right) = -1$$$A


Please try a new game Rotatly