Derivative of $$$- \frac{9 t}{100}$$$

The calculator will find the derivative of $$$- \frac{9 t}{100}$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{dt} \left(- \frac{9 t}{100}\right)$$$.

Solution

Apply the constant multiple rule $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ with $$$c = - \frac{9}{100}$$$ and $$$f{\left(t \right)} = t$$$:

$${\color{red}\left(\frac{d}{dt} \left(- \frac{9 t}{100}\right)\right)} = {\color{red}\left(- \frac{9 \frac{d}{dt} \left(t\right)}{100}\right)}$$

Apply the power rule $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dt} \left(t\right) = 1$$$:

$$- \frac{9 {\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{100} = - \frac{9 {\color{red}\left(1\right)}}{100}$$

Thus, $$$\frac{d}{dt} \left(- \frac{9 t}{100}\right) = - \frac{9}{100}$$$.

Answer

$$$\frac{d}{dt} \left(- \frac{9 t}{100}\right) = - \frac{9}{100}$$$A


Please try a new game Rotatly