Double integral $$$\int\limits_{0}^{2 \pi}\int\limits_{0}^{1} \left(\frac{\sin{\left(\theta \right)}}{15} + \frac{14}{15}\right)^{2}\, dr\, d\theta$$$

The calculator will try to find the double integral $$$\int\limits_{0}^{2 \pi}\int\limits_{0}^{1} \left(\frac{\sin{\left(\theta \right)}}{15} + \frac{14}{15}\right)^{2}\, dr\, d\theta.$$$
Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
In the format var1,lowerbound1,upperbound1,var2,lowerbound2,upperbound2,var3,lowerbound3,upperbound3, etc. For example, to get $$$\int\limits_{1}^{2}\int\limits_{1 - x}^{x^{2}} f{\left(x,y \right)}\, dy\, dx$$$, type y,1-x,x^2;x,1,2.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate $$$\int\limits_{0}^{2 \pi}\int\limits_{0}^{1} \left(\frac{\sin{\left(\theta \right)}}{15} + \frac{14}{15}\right)^{2}\, dr\, d\theta.$$$

Answer

$$$\int\limits_{0}^{2 \pi}\int\limits_{0}^{1} \left(\frac{\sin{\left(\theta \right)}}{15} + \frac{14}{15}\right)^{2}\, dr\, d\theta = \frac{131 \pi}{75}\approx 5.487315168270172$$$A


Please try a new game Rotatly