Integral of $$$\sin^{5}{\left(x \right)}$$$

The calculator will find the integral/antiderivative of $$$\sin^{5}{\left(x \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \sin^{5}{\left(x \right)}\, dx$$$.

Solution

Strip out one sine and write everything else in terms of the cosine, using the formula $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ with $$$\alpha=x$$$:

$${\color{red}{\int{\sin^{5}{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} d x}}}$$

Let $$$u=\cos{\left(x \right)}$$$.

Then $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (steps can be seen »), and we have that $$$\sin{\left(x \right)} dx = - du$$$.

Thus,

$${\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} d x}}} = {\color{red}{\int{\left(- \left(1 - u^{2}\right)^{2}\right)d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \left(1 - u^{2}\right)^{2}$$$:

$${\color{red}{\int{\left(- \left(1 - u^{2}\right)^{2}\right)d u}}} = {\color{red}{\left(- \int{\left(1 - u^{2}\right)^{2} d u}\right)}}$$

Expand the expression:

$$- {\color{red}{\int{\left(1 - u^{2}\right)^{2} d u}}} = - {\color{red}{\int{\left(u^{4} - 2 u^{2} + 1\right)d u}}}$$

Integrate term by term:

$$- {\color{red}{\int{\left(u^{4} - 2 u^{2} + 1\right)d u}}} = - {\color{red}{\left(\int{1 d u} - \int{2 u^{2} d u} + \int{u^{4} d u}\right)}}$$

Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:

$$\int{2 u^{2} d u} - \int{u^{4} d u} - {\color{red}{\int{1 d u}}} = \int{2 u^{2} d u} - \int{u^{4} d u} - {\color{red}{u}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=4$$$:

$$- u + \int{2 u^{2} d u} - {\color{red}{\int{u^{4} d u}}}=- u + \int{2 u^{2} d u} - {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=- u + \int{2 u^{2} d u} - {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = u^{2}$$$:

$$- \frac{u^{5}}{5} - u + {\color{red}{\int{2 u^{2} d u}}} = - \frac{u^{5}}{5} - u + {\color{red}{\left(2 \int{u^{2} d u}\right)}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$- \frac{u^{5}}{5} - u + 2 {\color{red}{\int{u^{2} d u}}}=- \frac{u^{5}}{5} - u + 2 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- \frac{u^{5}}{5} - u + 2 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

Recall that $$$u=\cos{\left(x \right)}$$$:

$$- {\color{red}{u}} + \frac{2 {\color{red}{u}}^{3}}{3} - \frac{{\color{red}{u}}^{5}}{5} = - {\color{red}{\cos{\left(x \right)}}} + \frac{2 {\color{red}{\cos{\left(x \right)}}}^{3}}{3} - \frac{{\color{red}{\cos{\left(x \right)}}}^{5}}{5}$$

Therefore,

$$\int{\sin^{5}{\left(x \right)} d x} = - \frac{\cos^{5}{\left(x \right)}}{5} + \frac{2 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}$$

Add the constant of integration:

$$\int{\sin^{5}{\left(x \right)} d x} = - \frac{\cos^{5}{\left(x \right)}}{5} + \frac{2 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}+C$$

Answer

$$$\int \sin^{5}{\left(x \right)}\, dx = \left(- \frac{\cos^{5}{\left(x \right)}}{5} + \frac{2 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly