Integral of $$$2 \sin{\left(\ln\left(x\right) \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 2 \sin{\left(\ln\left(x\right) \right)}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = \sin{\left(\ln{\left(x \right)} \right)}$$$:
$${\color{red}{\int{2 \sin{\left(\ln{\left(x \right)} \right)} d x}}} = {\color{red}{\left(2 \int{\sin{\left(\ln{\left(x \right)} \right)} d x}\right)}}$$
For the integral $$$\int{\sin{\left(\ln{\left(x \right)} \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=\sin{\left(\ln{\left(x \right)} \right)}$$$ and $$$\operatorname{dv}=dx$$$.
Then $$$\operatorname{du}=\left(\sin{\left(\ln{\left(x \right)} \right)}\right)^{\prime }dx=\frac{\cos{\left(\ln{\left(x \right)} \right)}}{x} dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{1 d x}=x$$$ (steps can be seen »).
So,
$$2 {\color{red}{\int{\sin{\left(\ln{\left(x \right)} \right)} d x}}}=2 {\color{red}{\left(\sin{\left(\ln{\left(x \right)} \right)} \cdot x-\int{x \cdot \frac{\cos{\left(\ln{\left(x \right)} \right)}}{x} d x}\right)}}=2 {\color{red}{\left(x \sin{\left(\ln{\left(x \right)} \right)} - \int{\cos{\left(\ln{\left(x \right)} \right)} d x}\right)}}$$
For the integral $$$\int{\cos{\left(\ln{\left(x \right)} \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=\cos{\left(\ln{\left(x \right)} \right)}$$$ and $$$\operatorname{dv}=dx$$$.
Then $$$\operatorname{du}=\left(\cos{\left(\ln{\left(x \right)} \right)}\right)^{\prime }dx=- \frac{\sin{\left(\ln{\left(x \right)} \right)}}{x} dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{1 d x}=x$$$ (steps can be seen »).
So,
$$2 x \sin{\left(\ln{\left(x \right)} \right)} - 2 {\color{red}{\int{\cos{\left(\ln{\left(x \right)} \right)} d x}}}=2 x \sin{\left(\ln{\left(x \right)} \right)} - 2 {\color{red}{\left(\cos{\left(\ln{\left(x \right)} \right)} \cdot x-\int{x \cdot \left(- \frac{\sin{\left(\ln{\left(x \right)} \right)}}{x}\right) d x}\right)}}=2 x \sin{\left(\ln{\left(x \right)} \right)} - 2 {\color{red}{\left(x \cos{\left(\ln{\left(x \right)} \right)} - \int{\left(- \sin{\left(\ln{\left(x \right)} \right)}\right)d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-1$$$ and $$$f{\left(x \right)} = \sin{\left(\ln{\left(x \right)} \right)}$$$:
$$2 x \sin{\left(\ln{\left(x \right)} \right)} - 2 x \cos{\left(\ln{\left(x \right)} \right)} + 2 {\color{red}{\int{\left(- \sin{\left(\ln{\left(x \right)} \right)}\right)d x}}} = 2 x \sin{\left(\ln{\left(x \right)} \right)} - 2 x \cos{\left(\ln{\left(x \right)} \right)} + 2 {\color{red}{\left(- \int{\sin{\left(\ln{\left(x \right)} \right)} d x}\right)}}$$
We've arrived to an integral that we already saw.
Thus, we've obtained the following simple equation with respect to the integral:
$$2 \int{\sin{\left(\ln{\left(x \right)} \right)} d x} = 2 x \sin{\left(\ln{\left(x \right)} \right)} - 2 x \cos{\left(\ln{\left(x \right)} \right)} - 2 \int{\sin{\left(\ln{\left(x \right)} \right)} d x}$$
Solving it, we get that
$$\int{\sin{\left(\ln{\left(x \right)} \right)} d x} = \frac{x \left(\sin{\left(\ln{\left(x \right)} \right)} - \cos{\left(\ln{\left(x \right)} \right)}\right)}{2}$$
So,
$$2 {\color{red}{\int{\sin{\left(\ln{\left(x \right)} \right)} d x}}} = 2 {\color{red}{\left(\frac{x \left(\sin{\left(\ln{\left(x \right)} \right)} - \cos{\left(\ln{\left(x \right)} \right)}\right)}{2}\right)}}$$
Therefore,
$$\int{2 \sin{\left(\ln{\left(x \right)} \right)} d x} = x \left(\sin{\left(\ln{\left(x \right)} \right)} - \cos{\left(\ln{\left(x \right)} \right)}\right)$$
Simplify:
$$\int{2 \sin{\left(\ln{\left(x \right)} \right)} d x} = - \sqrt{2} x \cos{\left(\ln{\left(x \right)} + \frac{\pi}{4} \right)}$$
Add the constant of integration:
$$\int{2 \sin{\left(\ln{\left(x \right)} \right)} d x} = - \sqrt{2} x \cos{\left(\ln{\left(x \right)} + \frac{\pi}{4} \right)}+C$$
Answer
$$$\int 2 \sin{\left(\ln\left(x\right) \right)}\, dx = - \sqrt{2} x \cos{\left(\ln\left(x\right) + \frac{\pi}{4} \right)} + C$$$A