$$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin^{3}{\left(t \right)}, \cos^{3}{\left(t \right)}, \sin^{2}{\left(t \right)}\right\rangle$$$ 的單位切向量

該計算器將求出 $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin^{3}{\left(t \right)}, \cos^{3}{\left(t \right)}, \sin^{2}{\left(t \right)}\right\rangle$$$ 的單位切向量,並顯示步驟。

相關計算器: 單位法向量計算器, 單位副法向量計算器

$$$\langle$$$ $$$\rangle$$$
以逗號分隔。
若不需要在特定點的向量,請留空。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin^{3}{\left(t \right)}, \cos^{3}{\left(t \right)}, \sin^{2}{\left(t \right)}\right\rangle$$$ 的單位切向量。

解答

要找出單位切向量,我們需要先求 $$$\mathbf{\vec{r}\left(t\right)}$$$ 的導數(切向量),然後將其歸一化(求單位向量)。

$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}, - 3 \sin{\left(t \right)} \cos^{2}{\left(t \right)}, \sin{\left(2 t \right)}\right\rangle$$$(步驟詳見導數計算器)。

$$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{6 \sqrt{26} \sin^{2}{\left(t \right)} \cos{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, - \frac{6 \sqrt{26} \sin{\left(t \right)} \cos^{2}{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, \frac{2 \sqrt{26} \sin{\left(2 t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}\right\rangle$$$的單位向量(步驟請參閱單位向量計算器)。

答案

單位切向量為 $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{6 \sqrt{26} \sin^{2}{\left(t \right)} \cos{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, - \frac{6 \sqrt{26} \sin{\left(t \right)} \cos^{2}{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, \frac{2 \sqrt{26} \sin{\left(2 t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}\right\rangle$$$A


Please try a new game Rotatly