$$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(2 t \right)}, \cos{\left(2 t \right)}, t\right\rangle$$$ 的扭率
相關計算器: 曲率計算器
您的輸入
求$$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(2 t \right)}, \cos{\left(2 t \right)}, t\right\rangle$$$的扭率。
解答
求$$$\mathbf{\vec{r}\left(t\right)}$$$的導數:$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 2 \cos{\left(2 t \right)}, - 2 \sin{\left(2 t \right)}, 1\right\rangle$$$(步驟詳見導數計算器)。
求$$$\mathbf{\vec{r}^{\prime}\left(t\right)}$$$的導數:$$$\mathbf{\vec{r}^{\prime\prime}\left(t\right)} = \left\langle - 4 \sin{\left(2 t \right)}, - 4 \cos{\left(2 t \right)}, 0\right\rangle$$$(步驟詳見導數計算器)。
求叉積:$$$\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)} = \left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$(步驟請參閱 叉積計算器)。
求$$$\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}$$$的模長:$$$\mathbf{\left\lvert \mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right\rvert} = 4 \sqrt{5}$$$(步驟請參見模長計算器)。
求$$$\mathbf{\vec{r}^{\prime\prime}\left(t\right)}$$$的導數:$$$\mathbf{\vec{r}^{\prime\prime\prime}\left(t\right)} = \left\langle - 8 \cos{\left(2 t \right)}, 8 \sin{\left(2 t \right)}, 0\right\rangle$$$(步驟詳見導數計算器)。
求點積:$$$\left(\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right)\cdot \mathbf{\vec{r}^{\prime\prime\prime}\left(t\right)} = -32$$$(如需步驟,請參見點積計算器)。
最後,撓率為 $$$\tau\left(t\right) = \frac{\left(\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right)\cdot \mathbf{\vec{r}^{\prime\prime\prime}\left(t\right)}}{\mathbf{\left\lvert \mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right\rvert}^{2}} = - \frac{2}{5}$$$。
答案
撓率為 $$$\tau\left(t\right) = - \frac{2}{5}$$$A。