$$$16 r = \cos{\left(3 \theta \right)}$$$ 轉換為直角座標

此計算器會將極座標方程 $$$16 r = \cos{\left(3 \theta \right)}$$$ 轉換為直角(笛卡兒)座標形式,並顯示步驟。

相關計算器: 極座標/直角座標計算器

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$16 r = \cos{\left(3 \theta \right)}$$$ 轉換為直角座標。

解答

套用公式 $$$\cos{\left(3 \alpha \right)} = \cos^{3}{\left(\alpha \right)} - 3 \sin^{2}{\left(\alpha \right)} \cos{\left(\alpha \right)}$$$,令 $$$\alpha = \theta$$$$$$16 r = - 3 \sin^{2}{\left(\theta \right)} \cos{\left(\theta \right)} + \cos^{3}{\left(\theta \right)}$$$

$$$x = r \cos{\left(\theta \right)}$$$$$$y = r \sin{\left(\theta \right)}$$$,可得$$$\cos{\left(\theta \right)} = \frac{x}{r}$$$$$$\sin{\left(\theta \right)} = \frac{y}{r}$$$$$$\tan{\left(\theta \right)} = \frac{y}{x}$$$$$$\cot{\left(\theta \right)} = \frac{x}{y}$$$

輸入變為$$$16 r = \frac{x^{3}}{r^{3}} - \frac{3 x y^{2}}{r^{3}}$$$

化簡:現在輸入的形式為 $$$16 r^{4} - x^{3} + 3 x y^{2} = 0$$$

在直角座標中,$$$r = \sqrt{x^{2} + y^{2}}$$$$$$\theta = \operatorname{atan}{\left(\frac{y}{x} \right)}$$$

因此,輸入可改寫為 $$$- x^{3} + 3 x y^{2} + 16 \left(x^{2} + y^{2}\right)^{2} = 0$$$

答案

$$$16 r = \cos{\left(3 \theta \right)}$$$A 在直角座標中為 $$$- x^{3} + 3 x y^{2} + 16 \left(x^{2} + y^{2}\right)^{2} = 0$$$A


Please try a new game Rotatly