$$$\frac{x^{2}}{7 - x^{3}}$$$ 的積分

此計算器將求出 $$$\frac{x^{2}}{7 - x^{3}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{x^{2}}{7 - x^{3}}\, dx$$$

解答

$$$u=7 - x^{3}$$$

$$$du=\left(7 - x^{3}\right)^{\prime }dx = - 3 x^{2} dx$$$ (步驟見»),並可得 $$$x^{2} dx = - \frac{du}{3}$$$

因此,

$${\color{red}{\int{\frac{x^{2}}{7 - x^{3}} d x}}} = {\color{red}{\int{\left(- \frac{1}{3 u}\right)d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=- \frac{1}{3}$$$$$$f{\left(u \right)} = \frac{1}{u}$$$

$${\color{red}{\int{\left(- \frac{1}{3 u}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u} d u}}{3}\right)}}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{3}$$

回顧一下 $$$u=7 - x^{3}$$$

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{3} = - \frac{\ln{\left(\left|{{\color{red}{\left(7 - x^{3}\right)}}}\right| \right)}}{3}$$

因此,

$$\int{\frac{x^{2}}{7 - x^{3}} d x} = - \frac{\ln{\left(\left|{x^{3} - 7}\right| \right)}}{3}$$

加上積分常數:

$$\int{\frac{x^{2}}{7 - x^{3}} d x} = - \frac{\ln{\left(\left|{x^{3} - 7}\right| \right)}}{3}+C$$

答案

$$$\int \frac{x^{2}}{7 - x^{3}}\, dx = - \frac{\ln\left(\left|{x^{3} - 7}\right|\right)}{3} + C$$$A


Please try a new game Rotatly