$$$x \sin{\left(x^{2} \right)}$$$ 的積分
您的輸入
求$$$\int x \sin{\left(x^{2} \right)}\, dx$$$。
解答
令 $$$u=x^{2}$$$。
則 $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (步驟見»),並可得 $$$x dx = \frac{du}{2}$$$。
因此,
$${\color{red}{\int{x \sin{\left(x^{2} \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$
正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
回顧一下 $$$u=x^{2}$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{2} = - \frac{\cos{\left({\color{red}{x^{2}}} \right)}}{2}$$
因此,
$$\int{x \sin{\left(x^{2} \right)} d x} = - \frac{\cos{\left(x^{2} \right)}}{2}$$
加上積分常數:
$$\int{x \sin{\left(x^{2} \right)} d x} = - \frac{\cos{\left(x^{2} \right)}}{2}+C$$
答案
$$$\int x \sin{\left(x^{2} \right)}\, dx = - \frac{\cos{\left(x^{2} \right)}}{2} + C$$$A