$$$x \cos{\left(\pi n x \right)}$$$$$$x$$$ 的積分

此計算器會求出 $$$x \cos{\left(\pi n x \right)}$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int x \cos{\left(\pi n x \right)}\, dx$$$

解答

對於積分 $$$\int{x \cos{\left(\pi n x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=\cos{\left(\pi n x \right)} dx$$$

$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{\cos{\left(\pi n x \right)} d x}=\frac{\sin{\left(\pi n x \right)}}{\pi n}$$$(步驟見 »)。

該積分變為

$${\color{red}{\int{x \cos{\left(\pi n x \right)} d x}}}={\color{red}{\left(x \cdot \frac{\sin{\left(\pi n x \right)}}{\pi n}-\int{\frac{\sin{\left(\pi n x \right)}}{\pi n} \cdot 1 d x}\right)}}={\color{red}{\left(- \int{\frac{\sin{\left(\pi n x \right)}}{\pi n} d x} + \frac{x \sin{\left(\pi n x \right)}}{\pi n}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{\pi n}$$$$$$f{\left(x \right)} = \sin{\left(\pi n x \right)}$$$

$$- {\color{red}{\int{\frac{\sin{\left(\pi n x \right)}}{\pi n} d x}}} + \frac{x \sin{\left(\pi n x \right)}}{\pi n} = - {\color{red}{\frac{\int{\sin{\left(\pi n x \right)} d x}}{\pi n}}} + \frac{x \sin{\left(\pi n x \right)}}{\pi n}$$

$$$u=\pi n x$$$

$$$du=\left(\pi n x\right)^{\prime }dx = \pi n dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{\pi n}$$$

因此,

$$\frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\int{\sin{\left(\pi n x \right)} d x}}}}{\pi n} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi n} d u}}}}{\pi n}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{\pi n}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$

$$\frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi n} d u}}}}{\pi n} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{\pi n}}}}{\pi n}$$

正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$

$$\frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{\pi^{2} n^{2}} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{\pi^{2} n^{2}}$$

回顧一下 $$$u=\pi n x$$$

$$\frac{x \sin{\left(\pi n x \right)}}{\pi n} + \frac{\cos{\left({\color{red}{u}} \right)}}{\pi^{2} n^{2}} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} + \frac{\cos{\left({\color{red}{\pi n x}} \right)}}{\pi^{2} n^{2}}$$

因此,

$$\int{x \cos{\left(\pi n x \right)} d x} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} + \frac{\cos{\left(\pi n x \right)}}{\pi^{2} n^{2}}$$

化簡:

$$\int{x \cos{\left(\pi n x \right)} d x} = \frac{\pi n x \sin{\left(\pi n x \right)} + \cos{\left(\pi n x \right)}}{\pi^{2} n^{2}}$$

加上積分常數:

$$\int{x \cos{\left(\pi n x \right)} d x} = \frac{\pi n x \sin{\left(\pi n x \right)} + \cos{\left(\pi n x \right)}}{\pi^{2} n^{2}}+C$$

答案

$$$\int x \cos{\left(\pi n x \right)}\, dx = \frac{\pi n x \sin{\left(\pi n x \right)} + \cos{\left(\pi n x \right)}}{\pi^{2} n^{2}} + C$$$A


Please try a new game Rotatly