$$$\sin{\left(u \right)}$$$ 的積分
您的輸入
求$$$\int \sin{\left(u \right)}\, du$$$。
解答
正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
因此,
$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$
加上積分常數:
$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}+C$$
答案
$$$\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)} + C$$$A
Please try a new game Rotatly