$$$\frac{\sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}}$$$ 的積分

此計算器將求出 $$$\frac{\sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx$$$

解答

重寫被積函數:

$${\color{red}{\int{\frac{\sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{2 \cos^{2}{\left(x \right)} d x}}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$$$$f{\left(x \right)} = \cos^{2}{\left(x \right)}$$$

$${\color{red}{\int{2 \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\left(2 \int{\cos^{2}{\left(x \right)} d x}\right)}}$$

套用降冪公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$,令 $$$\alpha=x$$$:

$$2 {\color{red}{\int{\cos^{2}{\left(x \right)} d x}}} = 2 {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \cos{\left(2 x \right)} + 1$$$

$$2 {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}} = 2 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}{2}\right)}}$$

逐項積分:

$${\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\cos{\left(2 x \right)} d x}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$

$$\int{\cos{\left(2 x \right)} d x} + {\color{red}{\int{1 d x}}} = \int{\cos{\left(2 x \right)} d x} + {\color{red}{x}}$$

$$$u=2 x$$$

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$

因此,

$$x + {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = x + {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$

$$x + {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = x + {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$

$$x + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = x + \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$

回顧一下 $$$u=2 x$$$

$$x + \frac{\sin{\left({\color{red}{u}} \right)}}{2} = x + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$

因此,

$$\int{\frac{\sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}} d x} = x + \frac{\sin{\left(2 x \right)}}{2}$$

加上積分常數:

$$\int{\frac{\sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}} d x} = x + \frac{\sin{\left(2 x \right)}}{2}+C$$

答案

$$$\int \frac{\sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx = \left(x + \frac{\sin{\left(2 x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly