$$$\sec{\left(3 x \right)}$$$ 的積分

此計算器將求出 $$$\sec{\left(3 x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \sec{\left(3 x \right)}\, dx$$$

解答

$$$u=3 x$$$

$$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{3}$$$

因此,

$${\color{red}{\int{\sec{\left(3 x \right)} d x}}} = {\color{red}{\int{\frac{\sec{\left(u \right)}}{3} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{3}$$$$$$f{\left(u \right)} = \sec{\left(u \right)}$$$

$${\color{red}{\int{\frac{\sec{\left(u \right)}}{3} d u}}} = {\color{red}{\left(\frac{\int{\sec{\left(u \right)} d u}}{3}\right)}}$$

將正割改寫為 $$$\sec\left( u \right)=\frac{1}{\cos\left( u \right)}$$$:

$$\frac{{\color{red}{\int{\sec{\left(u \right)} d u}}}}{3} = \frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{3}$$

使用公式 $$$\cos\left( u \right)=\sin\left( u + \frac{\pi}{2}\right)$$$ 將餘弦用正弦表示,然後使用二倍角公式 $$$\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right)$$$ 將正弦改寫。:

$$\frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{3} = \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{3}$$

將分子與分母同時乘以 $$$\sec^2\left(\frac{ u }{2} + \frac{\pi}{4} \right)$$$:

$$\frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{3} = \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{3}$$

$$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$

$$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (步驟見»),並可得 $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$

該積分可改寫為

$$\frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{3} = \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{3}$$

$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$

$$\frac{{\color{red}{\int{\frac{1}{v} d v}}}}{3} = \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{3}$$

回顧一下 $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$

$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{3} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{3}$$

回顧一下 $$$u=3 x$$$

$$\frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{u}}}{2} \right)}}\right| \right)}}{3} = \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{\left(3 x\right)}}}{2} \right)}}\right| \right)}}{3}$$

因此,

$$\int{\sec{\left(3 x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{3 x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{3}$$

化簡:

$$\int{\sec{\left(3 x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{6 x + \pi}{4} \right)}}\right| \right)}}{3}$$

加上積分常數:

$$\int{\sec{\left(3 x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{6 x + \pi}{4} \right)}}\right| \right)}}{3}+C$$

答案

$$$\int \sec{\left(3 x \right)}\, dx = \frac{\ln\left(\left|{\tan{\left(\frac{6 x + \pi}{4} \right)}}\right|\right)}{3} + C$$$A


Please try a new game Rotatly