$$$\frac{\ln\left(1 - z\right)}{z}$$$ 的積分
您的輸入
求$$$\int \frac{\ln\left(1 - z\right)}{z}\, dz$$$。
解答
此積分(多重對數函數)不存在閉式表示:
$${\color{red}{\int{\frac{\ln{\left(1 - z \right)}}{z} d z}}} = {\color{red}{\left(- \operatorname{Li}_{2}\left(z\right)\right)}}$$
因此,
$$\int{\frac{\ln{\left(1 - z \right)}}{z} d z} = - \operatorname{Li}_{2}\left(z\right)$$
加上積分常數:
$$\int{\frac{\ln{\left(1 - z \right)}}{z} d z} = - \operatorname{Li}_{2}\left(z\right)+C$$
答案
$$$\int \frac{\ln\left(1 - z\right)}{z}\, dz = - \operatorname{Li}_{2}\left(z\right) + C$$$A
Please try a new game Rotatly