$$$f x$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int f x\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=f$$$ 與 $$$f{\left(x \right)} = x$$$:
$${\color{red}{\int{f x d x}}} = {\color{red}{f \int{x d x}}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$:
$$f {\color{red}{\int{x d x}}}=f {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=f {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
因此,
$$\int{f x d x} = \frac{f x^{2}}{2}$$
加上積分常數:
$$\int{f x d x} = \frac{f x^{2}}{2}+C$$
答案
$$$\int f x\, dx = \frac{f x^{2}}{2} + C$$$A
Please try a new game Rotatly