$$$e^{\sqrt{x}}$$$ 的積分
您的輸入
求$$$\int e^{\sqrt{x}}\, dx$$$。
解答
令 $$$u=\sqrt{x}$$$。
則 $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (步驟見»),並可得 $$$\frac{dx}{\sqrt{x}} = 2 du$$$。
因此,
$${\color{red}{\int{e^{\sqrt{x}} d x}}} = {\color{red}{\int{2 u e^{u} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=2$$$ 與 $$$f{\left(u \right)} = u e^{u}$$$:
$${\color{red}{\int{2 u e^{u} d u}}} = {\color{red}{\left(2 \int{u e^{u} d u}\right)}}$$
對於積分 $$$\int{u e^{u} d u}$$$,使用分部積分法 $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$。
令 $$$\operatorname{m}=u$$$ 與 $$$\operatorname{dv}=e^{u} du$$$。
則 $$$\operatorname{dm}=\left(u\right)^{\prime }du=1 du$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$(步驟見 »)。
所以,
$$2 {\color{red}{\int{u e^{u} d u}}}=2 {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}=2 {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$$2 u e^{u} - 2 {\color{red}{\int{e^{u} d u}}} = 2 u e^{u} - 2 {\color{red}{e^{u}}}$$
回顧一下 $$$u=\sqrt{x}$$$:
$$- 2 e^{{\color{red}{u}}} + 2 {\color{red}{u}} e^{{\color{red}{u}}} = - 2 e^{{\color{red}{\sqrt{x}}}} + 2 {\color{red}{\sqrt{x}}} e^{{\color{red}{\sqrt{x}}}}$$
因此,
$$\int{e^{\sqrt{x}} d x} = 2 \sqrt{x} e^{\sqrt{x}} - 2 e^{\sqrt{x}}$$
化簡:
$$\int{e^{\sqrt{x}} d x} = 2 \left(\sqrt{x} - 1\right) e^{\sqrt{x}}$$
加上積分常數:
$$\int{e^{\sqrt{x}} d x} = 2 \left(\sqrt{x} - 1\right) e^{\sqrt{x}}+C$$
答案
$$$\int e^{\sqrt{x}}\, dx = 2 \left(\sqrt{x} - 1\right) e^{\sqrt{x}} + C$$$A