$$$e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$$ 的積分

此計算器將求出 $$$e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx$$$

解答

$$$u=\sin{\left(x \right)}$$$

$$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\cos{\left(x \right)} dx = du$$$

所以,

$${\color{red}{\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x}}} = {\color{red}{\int{e^{u} d u}}}$$

指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$

$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$

回顧一下 $$$u=\sin{\left(x \right)}$$$

$$e^{{\color{red}{u}}} = e^{{\color{red}{\sin{\left(x \right)}}}}$$

因此,

$$\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = e^{\sin{\left(x \right)}}$$

加上積分常數:

$$\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = e^{\sin{\left(x \right)}}+C$$

答案

$$$\int e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx = e^{\sin{\left(x \right)}} + C$$$A


Please try a new game Rotatly