$$$e^{x + 2}$$$ 的積分
您的輸入
求$$$\int e^{x + 2}\, dx$$$。
解答
令 $$$u=x + 2$$$。
則 $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$。
該積分變為
$${\color{red}{\int{e^{x + 2} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
回顧一下 $$$u=x + 2$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{\left(x + 2\right)}}}$$
因此,
$$\int{e^{x + 2} d x} = e^{x + 2}$$
加上積分常數:
$$\int{e^{x + 2} d x} = e^{x + 2}+C$$
答案
$$$\int e^{x + 2}\, dx = e^{x + 2} + C$$$A
Please try a new game Rotatly