$$$e^{- \frac{141 p t}{800} + \frac{1673}{500}}$$$$$$t$$$ 的積分

此計算器會求出 $$$e^{- \frac{141 p t}{800} + \frac{1673}{500}}$$$$$$t$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int e^{- \frac{141 p t}{800} + \frac{1673}{500}}\, dt$$$

解答

$$$u=- \frac{141 p t}{800} + \frac{1673}{500}$$$

$$$du=\left(- \frac{141 p t}{800} + \frac{1673}{500}\right)^{\prime }dt = - \frac{141 p}{800} dt$$$ (步驟見»),並可得 $$$dt = - \frac{800 du}{141 p}$$$

該積分可改寫為

$${\color{red}{\int{e^{- \frac{141 p t}{800} + \frac{1673}{500}} d t}}} = {\color{red}{\int{\left(- \frac{800 e^{u}}{141 p}\right)d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=- \frac{800}{141 p}$$$$$$f{\left(u \right)} = e^{u}$$$

$${\color{red}{\int{\left(- \frac{800 e^{u}}{141 p}\right)d u}}} = {\color{red}{\left(- \frac{800 \int{e^{u} d u}}{141 p}\right)}}$$

指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$

$$- \frac{800 {\color{red}{\int{e^{u} d u}}}}{141 p} = - \frac{800 {\color{red}{e^{u}}}}{141 p}$$

回顧一下 $$$u=- \frac{141 p t}{800} + \frac{1673}{500}$$$

$$- \frac{800 e^{{\color{red}{u}}}}{141 p} = - \frac{800 e^{{\color{red}{\left(- \frac{141 p t}{800} + \frac{1673}{500}\right)}}}}{141 p}$$

因此,

$$\int{e^{- \frac{141 p t}{800} + \frac{1673}{500}} d t} = - \frac{800 e^{- \frac{141 p t}{800} + \frac{1673}{500}}}{141 p}$$

加上積分常數:

$$\int{e^{- \frac{141 p t}{800} + \frac{1673}{500}} d t} = - \frac{800 e^{- \frac{141 p t}{800} + \frac{1673}{500}}}{141 p}+C$$

答案

$$$\int e^{- \frac{141 p t}{800} + \frac{1673}{500}}\, dt = - \frac{800 e^{- \frac{141 p t}{800} + \frac{1673}{500}}}{141 p} + C$$$A


Please try a new game Rotatly