$$$\cos{\left(\frac{t}{a} \right)}$$$ 對 $$$t$$$ 的積分
您的輸入
求$$$\int \cos{\left(\frac{t}{a} \right)}\, dt$$$。
解答
令 $$$u=\frac{t}{a}$$$。
則 $$$du=\left(\frac{t}{a}\right)^{\prime }dt = \frac{dt}{a}$$$ (步驟見»),並可得 $$$dt = a du$$$。
該積分變為
$${\color{red}{\int{\cos{\left(\frac{t}{a} \right)} d t}}} = {\color{red}{\int{a \cos{\left(u \right)} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=a$$$ 與 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{a \cos{\left(u \right)} d u}}} = {\color{red}{a \int{\cos{\left(u \right)} d u}}}$$
餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$a {\color{red}{\int{\cos{\left(u \right)} d u}}} = a {\color{red}{\sin{\left(u \right)}}}$$
回顧一下 $$$u=\frac{t}{a}$$$:
$$a \sin{\left({\color{red}{u}} \right)} = a \sin{\left({\color{red}{\frac{t}{a}}} \right)}$$
因此,
$$\int{\cos{\left(\frac{t}{a} \right)} d t} = a \sin{\left(\frac{t}{a} \right)}$$
加上積分常數:
$$\int{\cos{\left(\frac{t}{a} \right)} d t} = a \sin{\left(\frac{t}{a} \right)}+C$$
答案
$$$\int \cos{\left(\frac{t}{a} \right)}\, dt = a \sin{\left(\frac{t}{a} \right)} + C$$$A