$$$\cos{\left(u \right)}$$$ 的積分
您的輸入
求$$$\int \cos{\left(u \right)}\, du$$$。
解答
餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\cos{\left(u \right)} d u}}} = {\color{red}{\sin{\left(u \right)}}}$$
因此,
$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$
加上積分常數:
$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}+C$$
答案
$$$\int \cos{\left(u \right)}\, du = \sin{\left(u \right)} + C$$$A
Please try a new game Rotatly