$$$9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)}$$$ 對 $$$x$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int 9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=9 i n t$$$ 與 $$$f{\left(x \right)} = \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)}$$$:
$${\color{red}{\int{9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x}}} = {\color{red}{\left(9 i n t \int{\sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x}\right)}}$$
重寫被積函數:
$$9 i n t {\color{red}{\int{\sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x}}} = 9 i n t {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}}$$
令 $$$u=\sin{\left(x \right)}$$$。
則 $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\cos{\left(x \right)} dx = du$$$。
因此,
$$9 i n t {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = 9 i n t {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$9 i n t {\color{red}{\int{\frac{1}{u} d u}}} = 9 i n t {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回顧一下 $$$u=\sin{\left(x \right)}$$$:
$$9 i n t \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 9 i n t \ln{\left(\left|{{\color{red}{\sin{\left(x \right)}}}}\right| \right)}$$
因此,
$$\int{9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x} = 9 i n t \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)}$$
加上積分常數:
$$\int{9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x} = 9 i n t \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)}+C$$
答案
$$$\int 9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)}\, dx = 9 i n t \ln\left(\left|{\sin{\left(x \right)}}\right|\right) + C$$$A