$$$84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)}$$$ 對 $$$x$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int 84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=84 i n t$$$ 與 $$$f{\left(x \right)} = \sin{\left(3 x \right)} \cos{\left(3 x \right)}$$$:
$${\color{red}{\int{84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)} d x}}} = {\color{red}{\left(84 i n t \int{\sin{\left(3 x \right)} \cos{\left(3 x \right)} d x}\right)}}$$
令 $$$u=\sin{\left(3 x \right)}$$$。
則 $$$du=\left(\sin{\left(3 x \right)}\right)^{\prime }dx = 3 \cos{\left(3 x \right)} dx$$$ (步驟見»),並可得 $$$\cos{\left(3 x \right)} dx = \frac{du}{3}$$$。
該積分可改寫為
$$84 i n t {\color{red}{\int{\sin{\left(3 x \right)} \cos{\left(3 x \right)} d x}}} = 84 i n t {\color{red}{\int{\frac{u}{3} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{3}$$$ 與 $$$f{\left(u \right)} = u$$$:
$$84 i n t {\color{red}{\int{\frac{u}{3} d u}}} = 84 i n t {\color{red}{\left(\frac{\int{u d u}}{3}\right)}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$:
$$28 i n t {\color{red}{\int{u d u}}}=28 i n t {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=28 i n t {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$
回顧一下 $$$u=\sin{\left(3 x \right)}$$$:
$$14 i n t {\color{red}{u}}^{2} = 14 i n t {\color{red}{\sin{\left(3 x \right)}}}^{2}$$
因此,
$$\int{84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)} d x} = 14 i n t \sin^{2}{\left(3 x \right)}$$
加上積分常數:
$$\int{84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)} d x} = 14 i n t \sin^{2}{\left(3 x \right)}+C$$
答案
$$$\int 84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)}\, dx = 14 i n t \sin^{2}{\left(3 x \right)} + C$$$A