$$$8 x - 5$$$ 的積分
您的輸入
求$$$\int \left(8 x - 5\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(8 x - 5\right)d x}}} = {\color{red}{\left(- \int{5 d x} + \int{8 x d x}\right)}}$$
配合 $$$c=5$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$\int{8 x d x} - {\color{red}{\int{5 d x}}} = \int{8 x d x} - {\color{red}{\left(5 x\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=8$$$ 與 $$$f{\left(x \right)} = x$$$:
$$- 5 x + {\color{red}{\int{8 x d x}}} = - 5 x + {\color{red}{\left(8 \int{x d x}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$:
$$- 5 x + 8 {\color{red}{\int{x d x}}}=- 5 x + 8 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 5 x + 8 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
因此,
$$\int{\left(8 x - 5\right)d x} = 4 x^{2} - 5 x$$
化簡:
$$\int{\left(8 x - 5\right)d x} = x \left(4 x - 5\right)$$
加上積分常數:
$$\int{\left(8 x - 5\right)d x} = x \left(4 x - 5\right)+C$$
答案
$$$\int \left(8 x - 5\right)\, dx = x \left(4 x - 5\right) + C$$$A