$$$\frac{68}{r}$$$ 的積分
您的輸入
求$$$\int \frac{68}{r}\, dr$$$。
解答
套用常數倍法則 $$$\int c f{\left(r \right)}\, dr = c \int f{\left(r \right)}\, dr$$$,使用 $$$c=68$$$ 與 $$$f{\left(r \right)} = \frac{1}{r}$$$:
$${\color{red}{\int{\frac{68}{r} d r}}} = {\color{red}{\left(68 \int{\frac{1}{r} d r}\right)}}$$
$$$\frac{1}{r}$$$ 的積分是 $$$\int{\frac{1}{r} d r} = \ln{\left(\left|{r}\right| \right)}$$$:
$$68 {\color{red}{\int{\frac{1}{r} d r}}} = 68 {\color{red}{\ln{\left(\left|{r}\right| \right)}}}$$
因此,
$$\int{\frac{68}{r} d r} = 68 \ln{\left(\left|{r}\right| \right)}$$
加上積分常數:
$$\int{\frac{68}{r} d r} = 68 \ln{\left(\left|{r}\right| \right)}+C$$
答案
$$$\int \frac{68}{r}\, dr = 68 \ln\left(\left|{r}\right|\right) + C$$$A
Please try a new game Rotatly