$$$- \frac{11 x^{10}}{4} + 4 x^{3} - 7 x^{2}$$$ 的積分

此計算器將求出 $$$- \frac{11 x^{10}}{4} + 4 x^{3} - 7 x^{2}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(- \frac{11 x^{10}}{4} + 4 x^{3} - 7 x^{2}\right)\, dx$$$

解答

逐項積分:

$${\color{red}{\int{\left(- \frac{11 x^{10}}{4} + 4 x^{3} - 7 x^{2}\right)d x}}} = {\color{red}{\left(- \int{7 x^{2} d x} + \int{4 x^{3} d x} - \int{\frac{11 x^{10}}{4} d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=7$$$$$$f{\left(x \right)} = x^{2}$$$

$$\int{4 x^{3} d x} - \int{\frac{11 x^{10}}{4} d x} - {\color{red}{\int{7 x^{2} d x}}} = \int{4 x^{3} d x} - \int{\frac{11 x^{10}}{4} d x} - {\color{red}{\left(7 \int{x^{2} d x}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$

$$\int{4 x^{3} d x} - \int{\frac{11 x^{10}}{4} d x} - 7 {\color{red}{\int{x^{2} d x}}}=\int{4 x^{3} d x} - \int{\frac{11 x^{10}}{4} d x} - 7 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\int{4 x^{3} d x} - \int{\frac{11 x^{10}}{4} d x} - 7 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=4$$$$$$f{\left(x \right)} = x^{3}$$$

$$- \frac{7 x^{3}}{3} - \int{\frac{11 x^{10}}{4} d x} + {\color{red}{\int{4 x^{3} d x}}} = - \frac{7 x^{3}}{3} - \int{\frac{11 x^{10}}{4} d x} + {\color{red}{\left(4 \int{x^{3} d x}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=3$$$

$$- \frac{7 x^{3}}{3} - \int{\frac{11 x^{10}}{4} d x} + 4 {\color{red}{\int{x^{3} d x}}}=- \frac{7 x^{3}}{3} - \int{\frac{11 x^{10}}{4} d x} + 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \frac{7 x^{3}}{3} - \int{\frac{11 x^{10}}{4} d x} + 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{11}{4}$$$$$$f{\left(x \right)} = x^{10}$$$

$$x^{4} - \frac{7 x^{3}}{3} - {\color{red}{\int{\frac{11 x^{10}}{4} d x}}} = x^{4} - \frac{7 x^{3}}{3} - {\color{red}{\left(\frac{11 \int{x^{10} d x}}{4}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=10$$$

$$x^{4} - \frac{7 x^{3}}{3} - \frac{11 {\color{red}{\int{x^{10} d x}}}}{4}=x^{4} - \frac{7 x^{3}}{3} - \frac{11 {\color{red}{\frac{x^{1 + 10}}{1 + 10}}}}{4}=x^{4} - \frac{7 x^{3}}{3} - \frac{11 {\color{red}{\left(\frac{x^{11}}{11}\right)}}}{4}$$

因此,

$$\int{\left(- \frac{11 x^{10}}{4} + 4 x^{3} - 7 x^{2}\right)d x} = - \frac{x^{11}}{4} + x^{4} - \frac{7 x^{3}}{3}$$

化簡:

$$\int{\left(- \frac{11 x^{10}}{4} + 4 x^{3} - 7 x^{2}\right)d x} = x^{3} \left(- \frac{x^{8}}{4} + x - \frac{7}{3}\right)$$

加上積分常數:

$$\int{\left(- \frac{11 x^{10}}{4} + 4 x^{3} - 7 x^{2}\right)d x} = x^{3} \left(- \frac{x^{8}}{4} + x - \frac{7}{3}\right)+C$$

答案

$$$\int \left(- \frac{11 x^{10}}{4} + 4 x^{3} - 7 x^{2}\right)\, dx = x^{3} \left(- \frac{x^{8}}{4} + x - \frac{7}{3}\right) + C$$$A


Please try a new game Rotatly