$$$37000 e^{- \frac{9 t}{100}}$$$ 的積分
您的輸入
求$$$\int 37000 e^{- \frac{9 t}{100}}\, dt$$$。
解答
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=37000$$$ 與 $$$f{\left(t \right)} = e^{- \frac{9 t}{100}}$$$:
$${\color{red}{\int{37000 e^{- \frac{9 t}{100}} d t}}} = {\color{red}{\left(37000 \int{e^{- \frac{9 t}{100}} d t}\right)}}$$
令 $$$u=- \frac{9 t}{100}$$$。
則 $$$du=\left(- \frac{9 t}{100}\right)^{\prime }dt = - \frac{9 dt}{100}$$$ (步驟見»),並可得 $$$dt = - \frac{100 du}{9}$$$。
該積分變為
$$37000 {\color{red}{\int{e^{- \frac{9 t}{100}} d t}}} = 37000 {\color{red}{\int{\left(- \frac{100 e^{u}}{9}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=- \frac{100}{9}$$$ 與 $$$f{\left(u \right)} = e^{u}$$$:
$$37000 {\color{red}{\int{\left(- \frac{100 e^{u}}{9}\right)d u}}} = 37000 {\color{red}{\left(- \frac{100 \int{e^{u} d u}}{9}\right)}}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{3700000 {\color{red}{\int{e^{u} d u}}}}{9} = - \frac{3700000 {\color{red}{e^{u}}}}{9}$$
回顧一下 $$$u=- \frac{9 t}{100}$$$:
$$- \frac{3700000 e^{{\color{red}{u}}}}{9} = - \frac{3700000 e^{{\color{red}{\left(- \frac{9 t}{100}\right)}}}}{9}$$
因此,
$$\int{37000 e^{- \frac{9 t}{100}} d t} = - \frac{3700000 e^{- \frac{9 t}{100}}}{9}$$
加上積分常數:
$$\int{37000 e^{- \frac{9 t}{100}} d t} = - \frac{3700000 e^{- \frac{9 t}{100}}}{9}+C$$
答案
$$$\int 37000 e^{- \frac{9 t}{100}}\, dt = - \frac{3700000 e^{- \frac{9 t}{100}}}{9} + C$$$A