$$$36 \cos^{2}{\left(\theta \right)}$$$ 的積分

此計算器將求出 $$$36 \cos^{2}{\left(\theta \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int 36 \cos^{2}{\left(\theta \right)}\, d\theta$$$

解答

套用常數倍法則 $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$,使用 $$$c=36$$$$$$f{\left(\theta \right)} = \cos^{2}{\left(\theta \right)}$$$

$${\color{red}{\int{36 \cos^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\left(36 \int{\cos^{2}{\left(\theta \right)} d \theta}\right)}}$$

套用降冪公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$,令 $$$\alpha=\theta$$$:

$$36 {\color{red}{\int{\cos^{2}{\left(\theta \right)} d \theta}}} = 36 {\color{red}{\int{\left(\frac{\cos{\left(2 \theta \right)}}{2} + \frac{1}{2}\right)d \theta}}}$$

套用常數倍法則 $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(\theta \right)} = \cos{\left(2 \theta \right)} + 1$$$

$$36 {\color{red}{\int{\left(\frac{\cos{\left(2 \theta \right)}}{2} + \frac{1}{2}\right)d \theta}}} = 36 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 \theta \right)} + 1\right)d \theta}}{2}\right)}}$$

逐項積分:

$$18 {\color{red}{\int{\left(\cos{\left(2 \theta \right)} + 1\right)d \theta}}} = 18 {\color{red}{\left(\int{1 d \theta} + \int{\cos{\left(2 \theta \right)} d \theta}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, d\theta = c \theta$$$

$$18 \int{\cos{\left(2 \theta \right)} d \theta} + 18 {\color{red}{\int{1 d \theta}}} = 18 \int{\cos{\left(2 \theta \right)} d \theta} + 18 {\color{red}{\theta}}$$

$$$u=2 \theta$$$

$$$du=\left(2 \theta\right)^{\prime }d\theta = 2 d\theta$$$ (步驟見»),並可得 $$$d\theta = \frac{du}{2}$$$

所以,

$$18 \theta + 18 {\color{red}{\int{\cos{\left(2 \theta \right)} d \theta}}} = 18 \theta + 18 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$

$$18 \theta + 18 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 18 \theta + 18 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$

$$18 \theta + 9 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 18 \theta + 9 {\color{red}{\sin{\left(u \right)}}}$$

回顧一下 $$$u=2 \theta$$$

$$18 \theta + 9 \sin{\left({\color{red}{u}} \right)} = 18 \theta + 9 \sin{\left({\color{red}{\left(2 \theta\right)}} \right)}$$

因此,

$$\int{36 \cos^{2}{\left(\theta \right)} d \theta} = 18 \theta + 9 \sin{\left(2 \theta \right)}$$

加上積分常數:

$$\int{36 \cos^{2}{\left(\theta \right)} d \theta} = 18 \theta + 9 \sin{\left(2 \theta \right)}+C$$

答案

$$$\int 36 \cos^{2}{\left(\theta \right)}\, d\theta = \left(18 \theta + 9 \sin{\left(2 \theta \right)}\right) + C$$$A


Please try a new game Rotatly