$$$2 x^{3} - 9$$$ 的積分
您的輸入
求$$$\int \left(2 x^{3} - 9\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(2 x^{3} - 9\right)d x}}} = {\color{red}{\left(- \int{9 d x} + \int{2 x^{3} d x}\right)}}$$
配合 $$$c=9$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$\int{2 x^{3} d x} - {\color{red}{\int{9 d x}}} = \int{2 x^{3} d x} - {\color{red}{\left(9 x\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$ 與 $$$f{\left(x \right)} = x^{3}$$$:
$$- 9 x + {\color{red}{\int{2 x^{3} d x}}} = - 9 x + {\color{red}{\left(2 \int{x^{3} d x}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=3$$$:
$$- 9 x + 2 {\color{red}{\int{x^{3} d x}}}=- 9 x + 2 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- 9 x + 2 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
因此,
$$\int{\left(2 x^{3} - 9\right)d x} = \frac{x^{4}}{2} - 9 x$$
化簡:
$$\int{\left(2 x^{3} - 9\right)d x} = \frac{x \left(x^{3} - 18\right)}{2}$$
加上積分常數:
$$\int{\left(2 x^{3} - 9\right)d x} = \frac{x \left(x^{3} - 18\right)}{2}+C$$
答案
$$$\int \left(2 x^{3} - 9\right)\, dx = \frac{x \left(x^{3} - 18\right)}{2} + C$$$A