$$$2 \sec{\left(x \right)}$$$ 的積分
您的輸入
求$$$\int 2 \sec{\left(x \right)}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$ 與 $$$f{\left(x \right)} = \sec{\left(x \right)}$$$:
$${\color{red}{\int{2 \sec{\left(x \right)} d x}}} = {\color{red}{\left(2 \int{\sec{\left(x \right)} d x}\right)}}$$
將正割改寫為 $$$\sec\left(x\right)=\frac{1}{\cos\left(x\right)}$$$:
$$2 {\color{red}{\int{\sec{\left(x \right)} d x}}} = 2 {\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}$$
使用公式 $$$\cos\left(x\right)=\sin\left(x + \frac{\pi}{2}\right)$$$ 將餘弦用正弦表示,然後使用二倍角公式 $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$ 將正弦改寫。:
$$2 {\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}} = 2 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}$$
將分子與分母同時乘以 $$$\sec^2\left(\frac{x}{2} + \frac{\pi}{4} \right)$$$:
$$2 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}} = 2 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}$$
令 $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$。
則 $$$du=\left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} dx$$$ (步驟見»),並可得 $$$\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} dx = 2 du$$$。
所以,
$$2 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}} = 2 {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回顧一下 $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$:
$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}$$
因此,
$$\int{2 \sec{\left(x \right)} d x} = 2 \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}$$
加上積分常數:
$$\int{2 \sec{\left(x \right)} d x} = 2 \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}+C$$
答案
$$$\int 2 \sec{\left(x \right)}\, dx = 2 \ln\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right|\right) + C$$$A