$$$2^{x} - 1$$$ 的積分
您的輸入
求$$$\int \left(2^{x} - 1\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(2^{x} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{2^{x} d x}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$\int{2^{x} d x} - {\color{red}{\int{1 d x}}} = \int{2^{x} d x} - {\color{red}{x}}$$
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:
$$- x + {\color{red}{\int{2^{x} d x}}} = - x + {\color{red}{\frac{2^{x}}{\ln{\left(2 \right)}}}}$$
因此,
$$\int{\left(2^{x} - 1\right)d x} = \frac{2^{x}}{\ln{\left(2 \right)}} - x$$
加上積分常數:
$$\int{\left(2^{x} - 1\right)d x} = \frac{2^{x}}{\ln{\left(2 \right)}} - x+C$$
答案
$$$\int \left(2^{x} - 1\right)\, dx = \left(\frac{2^{x}}{\ln\left(2\right)} - x\right) + C$$$A
Please try a new game Rotatly