$$$e x^{29}$$$ 的積分
您的輸入
求$$$\int e x^{29}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=e$$$ 與 $$$f{\left(x \right)} = x^{29}$$$:
$${\color{red}{\int{e x^{29} d x}}} = {\color{red}{e \int{x^{29} d x}}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=29$$$:
$$e {\color{red}{\int{x^{29} d x}}}=e {\color{red}{\frac{x^{1 + 29}}{1 + 29}}}=e {\color{red}{\left(\frac{x^{30}}{30}\right)}}$$
因此,
$$\int{e x^{29} d x} = \frac{e x^{30}}{30}$$
加上積分常數:
$$\int{e x^{29} d x} = \frac{e x^{30}}{30}+C$$
答案
$$$\int e x^{29}\, dx = \frac{e x^{30}}{30} + C$$$A
Please try a new game Rotatly