$$$\frac{x^{5}}{5}$$$ 的積分
您的輸入
求$$$\int \frac{x^{5}}{5}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{5}$$$ 與 $$$f{\left(x \right)} = x^{5}$$$:
$${\color{red}{\int{\frac{x^{5}}{5} d x}}} = {\color{red}{\left(\frac{\int{x^{5} d x}}{5}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=5$$$:
$$\frac{{\color{red}{\int{x^{5} d x}}}}{5}=\frac{{\color{red}{\frac{x^{1 + 5}}{1 + 5}}}}{5}=\frac{{\color{red}{\left(\frac{x^{6}}{6}\right)}}}{5}$$
因此,
$$\int{\frac{x^{5}}{5} d x} = \frac{x^{6}}{30}$$
加上積分常數:
$$\int{\frac{x^{5}}{5} d x} = \frac{x^{6}}{30}+C$$
答案
$$$\int \frac{x^{5}}{5}\, dx = \frac{x^{6}}{30} + C$$$A
Please try a new game Rotatly