$$$\frac{1}{x \ln\left(x^{3}\right)}$$$ 的積分
您的輸入
求$$$\int \frac{1}{3 x \ln\left(x\right)}\, dx$$$。
解答
已將輸入重寫為:$$$\int{\frac{1}{x \ln{\left(x^{3} \right)}} d x}=\int{\frac{1}{3 x \ln{\left(x \right)}} d x}$$$。
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{3}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x \ln{\left(x \right)}}$$$:
$${\color{red}{\int{\frac{1}{3 x \ln{\left(x \right)}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x \ln{\left(x \right)}} d x}}{3}\right)}}$$
令 $$$u=\ln{\left(x \right)}$$$。
則 $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (步驟見»),並可得 $$$\frac{dx}{x} = du$$$。
因此,
$$\frac{{\color{red}{\int{\frac{1}{x \ln{\left(x \right)}} d x}}}}{3} = \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{3}$$
回顧一下 $$$u=\ln{\left(x \right)}$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{3} = \frac{\ln{\left(\left|{{\color{red}{\ln{\left(x \right)}}}}\right| \right)}}{3}$$
因此,
$$\int{\frac{1}{3 x \ln{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}}{3}$$
加上積分常數:
$$\int{\frac{1}{3 x \ln{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}}{3}+C$$
答案
$$$\int \frac{1}{3 x \ln\left(x\right)}\, dx = \frac{\ln\left(\left|{\ln\left(x\right)}\right|\right)}{3} + C$$$A