$$$\frac{1}{x \sqrt{x^{2} - 1}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{x \sqrt{x^{2} - 1}}\, dx$$$。
解答
令 $$$u=\frac{1}{x}$$$。
則 $$$du=\left(\frac{1}{x}\right)^{\prime }dx = - \frac{1}{x^{2}} dx$$$ (步驟見»),並可得 $$$\frac{dx}{x^{2}} = - du$$$。
該積分變為
$${\color{red}{\int{\frac{1}{x \sqrt{x^{2} - 1}} d x}}} = {\color{red}{\int{\left(- \frac{1}{\sqrt{1 - u^{2}}}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = \frac{1}{\sqrt{1 - u^{2}}}$$$:
$${\color{red}{\int{\left(- \frac{1}{\sqrt{1 - u^{2}}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{\sqrt{1 - u^{2}}} d u}\right)}}$$
令 $$$u=\sin{\left(v \right)}$$$。
則 $$$du=\left(\sin{\left(v \right)}\right)^{\prime }dv = \cos{\left(v \right)} dv$$$(步驟見»)。
此外,由此可得 $$$v=\operatorname{asin}{\left(u \right)}$$$。
所以,
$$$\frac{1}{\sqrt{1 - u ^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( v \right)}}}$$$
使用恆等式 $$$1 - \sin^{2}{\left( v \right)} = \cos^{2}{\left( v \right)}$$$:
$$$\frac{1}{\sqrt{1 - \sin^{2}{\left( v \right)}}}=\frac{1}{\sqrt{\cos^{2}{\left( v \right)}}}$$$
假設 $$$\cos{\left( v \right)} \ge 0$$$,可得如下:
$$$\frac{1}{\sqrt{\cos^{2}{\left( v \right)}}} = \frac{1}{\cos{\left( v \right)}}$$$
積分可以改寫為
$$- {\color{red}{\int{\frac{1}{\sqrt{1 - u^{2}}} d u}}} = - {\color{red}{\int{1 d v}}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dv = c v$$$:
$$- {\color{red}{\int{1 d v}}} = - {\color{red}{v}}$$
回顧一下 $$$v=\operatorname{asin}{\left(u \right)}$$$:
$$- {\color{red}{v}} = - {\color{red}{\operatorname{asin}{\left(u \right)}}}$$
回顧一下 $$$u=\frac{1}{x}$$$:
$$- \operatorname{asin}{\left({\color{red}{u}} \right)} = - \operatorname{asin}{\left({\color{red}{\frac{1}{x}}} \right)}$$
因此,
$$\int{\frac{1}{x \sqrt{x^{2} - 1}} d x} = - \operatorname{asin}{\left(\frac{1}{x} \right)}$$
加上積分常數:
$$\int{\frac{1}{x \sqrt{x^{2} - 1}} d x} = - \operatorname{asin}{\left(\frac{1}{x} \right)}+C$$
答案
$$$\int \frac{1}{x \sqrt{x^{2} - 1}}\, dx = - \operatorname{asin}{\left(\frac{1}{x} \right)} + C$$$A