$$$\frac{1}{f \cos{\left(x \right)}}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \frac{1}{f \cos{\left(x \right)}}\, dx$$$。
解答
使用公式 $$$\cos\left(x\right)=\sin\left(x + \frac{\pi}{2}\right)$$$ 將餘弦用正弦表示,然後使用二倍角公式 $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$ 將正弦改寫。:
$${\color{red}{\int{\frac{1}{f \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{2 f \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}$$
將分子與分母同時乘以 $$$\sec^2\left(\frac{x}{2} + \frac{\pi}{4} \right)$$$:
$${\color{red}{\int{\frac{1}{2 f \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 f \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}$$
令 $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$。
則 $$$du=\left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} dx$$$ (步驟見»),並可得 $$$\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} dx = 2 du$$$。
所以,
$${\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 f \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}} = {\color{red}{\int{\frac{1}{f u} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{f}$$$ 與 $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\frac{1}{f u} d u}}} = {\color{red}{\frac{\int{\frac{1}{u} d u}}{f}}}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{f} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{f}$$
回顧一下 $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{f} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{f}$$
因此,
$$\int{\frac{1}{f \cos{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{f}$$
加上積分常數:
$$\int{\frac{1}{f \cos{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{f}+C$$
答案
$$$\int \frac{1}{f \cos{\left(x \right)}}\, dx = \frac{\ln\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right|\right)}{f} + C$$$A