$$$- b^{- x} + a^{- x}$$$$$$x$$$ 的積分

此計算器會求出 $$$- b^{- x} + a^{- x}$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(- b^{- x} + a^{- x}\right)\, dx$$$

解答

逐項積分:

$${\color{red}{\int{\left(- b^{- x} + a^{- x}\right)d x}}} = {\color{red}{\left(\int{a^{- x} d x} - \int{b^{- x} d x}\right)}}$$

$$$u=- x$$$

$$$du=\left(- x\right)^{\prime }dx = - dx$$$ (步驟見»),並可得 $$$dx = - du$$$

所以,

$$- \int{b^{- x} d x} + {\color{red}{\int{a^{- x} d x}}} = - \int{b^{- x} d x} + {\color{red}{\int{\left(- a^{u}\right)d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$$$$f{\left(u \right)} = a^{u}$$$

$$- \int{b^{- x} d x} + {\color{red}{\int{\left(- a^{u}\right)d u}}} = - \int{b^{- x} d x} + {\color{red}{\left(- \int{a^{u} d u}\right)}}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:

$$- \int{b^{- x} d x} - {\color{red}{\int{a^{u} d u}}} = - \int{b^{- x} d x} - {\color{red}{\frac{a^{u}}{\ln{\left(a \right)}}}}$$

回顧一下 $$$u=- x$$$

$$- \int{b^{- x} d x} - \frac{a^{{\color{red}{u}}}}{\ln{\left(a \right)}} = - \int{b^{- x} d x} - \frac{a^{{\color{red}{\left(- x\right)}}}}{\ln{\left(a \right)}}$$

$$$u=- x$$$

$$$du=\left(- x\right)^{\prime }dx = - dx$$$ (步驟見»),並可得 $$$dx = - du$$$

所以,

$$- {\color{red}{\int{b^{- x} d x}}} - \frac{a^{- x}}{\ln{\left(a \right)}} = - {\color{red}{\int{\left(- b^{u}\right)d u}}} - \frac{a^{- x}}{\ln{\left(a \right)}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$$$$f{\left(u \right)} = b^{u}$$$

$$- {\color{red}{\int{\left(- b^{u}\right)d u}}} - \frac{a^{- x}}{\ln{\left(a \right)}} = - {\color{red}{\left(- \int{b^{u} d u}\right)}} - \frac{a^{- x}}{\ln{\left(a \right)}}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=b$$$:

$${\color{red}{\int{b^{u} d u}}} - \frac{a^{- x}}{\ln{\left(a \right)}} = {\color{red}{\frac{b^{u}}{\ln{\left(b \right)}}}} - \frac{a^{- x}}{\ln{\left(a \right)}}$$

回顧一下 $$$u=- x$$$

$$\frac{b^{{\color{red}{u}}}}{\ln{\left(b \right)}} - \frac{a^{- x}}{\ln{\left(a \right)}} = \frac{b^{{\color{red}{\left(- x\right)}}}}{\ln{\left(b \right)}} - \frac{a^{- x}}{\ln{\left(a \right)}}$$

因此,

$$\int{\left(- b^{- x} + a^{- x}\right)d x} = \frac{b^{- x}}{\ln{\left(b \right)}} - \frac{a^{- x}}{\ln{\left(a \right)}}$$

加上積分常數:

$$\int{\left(- b^{- x} + a^{- x}\right)d x} = \frac{b^{- x}}{\ln{\left(b \right)}} - \frac{a^{- x}}{\ln{\left(a \right)}}+C$$

答案

$$$\int \left(- b^{- x} + a^{- x}\right)\, dx = \left(\frac{b^{- x}}{\ln\left(b\right)} - \frac{a^{- x}}{\ln\left(a\right)}\right) + C$$$A


Please try a new game Rotatly