$$$\sin{\left(\sqrt{x} \right)}$$$ 的積分
您的輸入
求$$$\int \sin{\left(\sqrt{x} \right)}\, dx$$$。
解答
令 $$$u=\sqrt{x}$$$。
則 $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (步驟見»),並可得 $$$\frac{dx}{\sqrt{x}} = 2 du$$$。
因此,
$${\color{red}{\int{\sin{\left(\sqrt{x} \right)} d x}}} = {\color{red}{\int{2 u \sin{\left(u \right)} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=2$$$ 與 $$$f{\left(u \right)} = u \sin{\left(u \right)}$$$:
$${\color{red}{\int{2 u \sin{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{u \sin{\left(u \right)} d u}\right)}}$$
對於積分 $$$\int{u \sin{\left(u \right)} d u}$$$,使用分部積分法 $$$\int \operatorname{w} \operatorname{dv} = \operatorname{w}\operatorname{v} - \int \operatorname{v} \operatorname{dw}$$$。
令 $$$\operatorname{w}=u$$$ 與 $$$\operatorname{dv}=\sin{\left(u \right)} du$$$。
則 $$$\operatorname{dw}=\left(u\right)^{\prime }du=1 du$$$(步驟見 »),且 $$$\operatorname{v}=\int{\sin{\left(u \right)} d u}=- \cos{\left(u \right)}$$$(步驟見 »)。
所以,
$$2 {\color{red}{\int{u \sin{\left(u \right)} d u}}}=2 {\color{red}{\left(u \cdot \left(- \cos{\left(u \right)}\right)-\int{\left(- \cos{\left(u \right)}\right) \cdot 1 d u}\right)}}=2 {\color{red}{\left(- u \cos{\left(u \right)} - \int{\left(- \cos{\left(u \right)}\right)d u}\right)}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- 2 u \cos{\left(u \right)} - 2 {\color{red}{\int{\left(- \cos{\left(u \right)}\right)d u}}} = - 2 u \cos{\left(u \right)} - 2 {\color{red}{\left(- \int{\cos{\left(u \right)} d u}\right)}}$$
餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- 2 u \cos{\left(u \right)} + 2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = - 2 u \cos{\left(u \right)} + 2 {\color{red}{\sin{\left(u \right)}}}$$
回顧一下 $$$u=\sqrt{x}$$$:
$$2 \sin{\left({\color{red}{u}} \right)} - 2 {\color{red}{u}} \cos{\left({\color{red}{u}} \right)} = 2 \sin{\left({\color{red}{\sqrt{x}}} \right)} - 2 {\color{red}{\sqrt{x}}} \cos{\left({\color{red}{\sqrt{x}}} \right)}$$
因此,
$$\int{\sin{\left(\sqrt{x} \right)} d x} = - 2 \sqrt{x} \cos{\left(\sqrt{x} \right)} + 2 \sin{\left(\sqrt{x} \right)}$$
加上積分常數:
$$\int{\sin{\left(\sqrt{x} \right)} d x} = - 2 \sqrt{x} \cos{\left(\sqrt{x} \right)} + 2 \sin{\left(\sqrt{x} \right)}+C$$
答案
$$$\int \sin{\left(\sqrt{x} \right)}\, dx = \left(- 2 \sqrt{x} \cos{\left(\sqrt{x} \right)} + 2 \sin{\left(\sqrt{x} \right)}\right) + C$$$A