$$$y \sin{\left(y^{2} \right)}$$$ 的積分
您的輸入
求$$$\int y \sin{\left(y^{2} \right)}\, dy$$$。
解答
令 $$$u=y^{2}$$$。
則 $$$du=\left(y^{2}\right)^{\prime }dy = 2 y dy$$$ (步驟見»),並可得 $$$y dy = \frac{du}{2}$$$。
該積分可改寫為
$${\color{red}{\int{y \sin{\left(y^{2} \right)} d y}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$
正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
回顧一下 $$$u=y^{2}$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{2} = - \frac{\cos{\left({\color{red}{y^{2}}} \right)}}{2}$$
因此,
$$\int{y \sin{\left(y^{2} \right)} d y} = - \frac{\cos{\left(y^{2} \right)}}{2}$$
加上積分常數:
$$\int{y \sin{\left(y^{2} \right)} d y} = - \frac{\cos{\left(y^{2} \right)}}{2}+C$$
答案
$$$\int y \sin{\left(y^{2} \right)}\, dy = - \frac{\cos{\left(y^{2} \right)}}{2} + C$$$A