$$$y \sin{\left(x y \right)}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int y \sin{\left(x y \right)}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=y$$$ 與 $$$f{\left(x \right)} = \sin{\left(x y \right)}$$$:
$${\color{red}{\int{y \sin{\left(x y \right)} d x}}} = {\color{red}{y \int{\sin{\left(x y \right)} d x}}}$$
令 $$$u=x y$$$。
則 $$$du=\left(x y\right)^{\prime }dx = y dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{y}$$$。
該積分變為
$$y {\color{red}{\int{\sin{\left(x y \right)} d x}}} = y {\color{red}{\int{\frac{\sin{\left(u \right)}}{y} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{y}$$$ 與 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$y {\color{red}{\int{\frac{\sin{\left(u \right)}}{y} d u}}} = y {\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{y}}}$$
正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
回顧一下 $$$u=x y$$$:
$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{x y}} \right)}$$
因此,
$$\int{y \sin{\left(x y \right)} d x} = - \cos{\left(x y \right)}$$
加上積分常數:
$$\int{y \sin{\left(x y \right)} d x} = - \cos{\left(x y \right)}+C$$
答案
$$$\int y \sin{\left(x y \right)}\, dx = - \cos{\left(x y \right)} + C$$$A