$$$x \ln\left(x\right) - x$$$ 的積分

此計算器將求出 $$$x \ln\left(x\right) - x$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(x \ln\left(x\right) - x\right)\, dx$$$

解答

逐項積分:

$${\color{red}{\int{\left(x \ln{\left(x \right)} - x\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{x \ln{\left(x \right)} d x}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$$\int{x \ln{\left(x \right)} d x} - {\color{red}{\int{x d x}}}=\int{x \ln{\left(x \right)} d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{x \ln{\left(x \right)} d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

對於積分 $$$\int{x \ln{\left(x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\ln{\left(x \right)}$$$$$$\operatorname{dv}=x dx$$$

$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(步驟見 »),且 $$$\operatorname{v}=\int{x d x}=\frac{x^{2}}{2}$$$(步驟見 »)。

該積分變為

$$- \frac{x^{2}}{2} + {\color{red}{\int{x \ln{\left(x \right)} d x}}}=- \frac{x^{2}}{2} + {\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{2}}{2}-\int{\frac{x^{2}}{2} \cdot \frac{1}{x} d x}\right)}}=- \frac{x^{2}}{2} + {\color{red}{\left(\frac{x^{2} \ln{\left(x \right)}}{2} - \int{\frac{x}{2} d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = x$$$

$$\frac{x^{2} \ln{\left(x \right)}}{2} - \frac{x^{2}}{2} - {\color{red}{\int{\frac{x}{2} d x}}} = \frac{x^{2} \ln{\left(x \right)}}{2} - \frac{x^{2}}{2} - {\color{red}{\left(\frac{\int{x d x}}{2}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$$\frac{x^{2} \ln{\left(x \right)}}{2} - \frac{x^{2}}{2} - \frac{{\color{red}{\int{x d x}}}}{2}=\frac{x^{2} \ln{\left(x \right)}}{2} - \frac{x^{2}}{2} - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}=\frac{x^{2} \ln{\left(x \right)}}{2} - \frac{x^{2}}{2} - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}$$

因此,

$$\int{\left(x \ln{\left(x \right)} - x\right)d x} = \frac{x^{2} \ln{\left(x \right)}}{2} - \frac{3 x^{2}}{4}$$

化簡:

$$\int{\left(x \ln{\left(x \right)} - x\right)d x} = \frac{x^{2} \left(2 \ln{\left(x \right)} - 3\right)}{4}$$

加上積分常數:

$$\int{\left(x \ln{\left(x \right)} - x\right)d x} = \frac{x^{2} \left(2 \ln{\left(x \right)} - 3\right)}{4}+C$$

答案

$$$\int \left(x \ln\left(x\right) - x\right)\, dx = \frac{x^{2} \left(2 \ln\left(x\right) - 3\right)}{4} + C$$$A


Please try a new game Rotatly