$$$x \cos{\left(9 x \right)}$$$ 的積分
您的輸入
求$$$\int x \cos{\left(9 x \right)}\, dx$$$。
解答
對於積分 $$$\int{x \cos{\left(9 x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=x$$$ 與 $$$\operatorname{dv}=\cos{\left(9 x \right)} dx$$$。
則 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{\cos{\left(9 x \right)} d x}=\frac{\sin{\left(9 x \right)}}{9}$$$(步驟見 »)。
因此,
$${\color{red}{\int{x \cos{\left(9 x \right)} d x}}}={\color{red}{\left(x \cdot \frac{\sin{\left(9 x \right)}}{9}-\int{\frac{\sin{\left(9 x \right)}}{9} \cdot 1 d x}\right)}}={\color{red}{\left(\frac{x \sin{\left(9 x \right)}}{9} - \int{\frac{\sin{\left(9 x \right)}}{9} d x}\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{9}$$$ 與 $$$f{\left(x \right)} = \sin{\left(9 x \right)}$$$:
$$\frac{x \sin{\left(9 x \right)}}{9} - {\color{red}{\int{\frac{\sin{\left(9 x \right)}}{9} d x}}} = \frac{x \sin{\left(9 x \right)}}{9} - {\color{red}{\left(\frac{\int{\sin{\left(9 x \right)} d x}}{9}\right)}}$$
令 $$$u=9 x$$$。
則 $$$du=\left(9 x\right)^{\prime }dx = 9 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{9}$$$。
因此,
$$\frac{x \sin{\left(9 x \right)}}{9} - \frac{{\color{red}{\int{\sin{\left(9 x \right)} d x}}}}{9} = \frac{x \sin{\left(9 x \right)}}{9} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{9} d u}}}}{9}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{9}$$$ 與 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{x \sin{\left(9 x \right)}}{9} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{9} d u}}}}{9} = \frac{x \sin{\left(9 x \right)}}{9} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{9}\right)}}}{9}$$
正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{x \sin{\left(9 x \right)}}{9} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{81} = \frac{x \sin{\left(9 x \right)}}{9} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{81}$$
回顧一下 $$$u=9 x$$$:
$$\frac{x \sin{\left(9 x \right)}}{9} + \frac{\cos{\left({\color{red}{u}} \right)}}{81} = \frac{x \sin{\left(9 x \right)}}{9} + \frac{\cos{\left({\color{red}{\left(9 x\right)}} \right)}}{81}$$
因此,
$$\int{x \cos{\left(9 x \right)} d x} = \frac{x \sin{\left(9 x \right)}}{9} + \frac{\cos{\left(9 x \right)}}{81}$$
加上積分常數:
$$\int{x \cos{\left(9 x \right)} d x} = \frac{x \sin{\left(9 x \right)}}{9} + \frac{\cos{\left(9 x \right)}}{81}+C$$
答案
$$$\int x \cos{\left(9 x \right)}\, dx = \left(\frac{x \sin{\left(9 x \right)}}{9} + \frac{\cos{\left(9 x \right)}}{81}\right) + C$$$A